Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ильшат Ринатович Мухам РИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ Должность: директор

Дата подписания: 13.07.2023 14:34:25 РОССИЙСКОЙ ФЕДЕРАЦИИ

Уникальный федеральное государственное бюджетное образовательное учреждение высшеаba80b84033c9ef196388e9ea0434f90a83a40954ba770e84bebe64f07d1d8d0 го образования «Казанский национальный исследовательский технический

университет им. А.Н. Туполева-КАИ» (КНИТУ-КАИ)

Чистопольский филиал «Восток»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ

по дисциплине

ЭЛЕКТРОНИКА И МИКРОПРОЦЕССОРНАЯ ТЕХНИКА Семестр 7

Индекс по учебному плану: Б1.В.09

Направление подготовки: 12.03.01 Приборостроение

Квалификация: Бакалавр

Профиль подготовки: Приборостроение

Типы задач профессиональной деятельности: проектно-конструкторский,

производственно-технологический

Рекомендовано УМК ЧФ КНИТУ-КАИ

Чистополь 2023 г.

Введение

Данные методические указания предназначены для проведения лабораторных работ по дисциплине «Электроника и микропроцессорная техника»

Цикл лабораторных работ включает задания различного уровня.

Лабораторные работы №1, №2, №3, №4 ориентированы на изучение структуры команд микропроцессора Intel 80386.

№ п/п	№ раздела	Наименование лабораторных работ	Трудоемкость
			(час.)
1	3	Команды пересылки данных микропроцессора Intel:	4
		память \rightarrow регистр;	
		регистр \rightarrow память	
2	3	Команды пересылки данных микропроцессора Intel:	4
		данные в память;	
		данные в регистр	
3	3	Команды пересылки данных микропроцессора Intel из	4
		аккумулятора в память и из памяти в аккумулятор	
4	3	Команды пересылки данных микропроцессора Intel из	4
		памяти в сегментный регистр и из сегментного регистра	
		в аккумулятор	

1 Лабораторная работа №1 «Команды пересылки данных микропроцессора Intel: память — регистр; регистр — память»

1.1 Цель работы

Целью настоящей лабораторной работы является изучение способов пересылки данных микропроцессора Intel 80386 из памяти в регистр и из регистра в память.

1.2 Общие положения

В лабораторной работе №1 задаются команды пересылки данных из памяти в регистр и из регистра в память в виде формулы на языке Ассемблера.

В соответствии с заданной формулой команды необходимо заполнить таблицу формата команды двоичными кодами полей.

1.3 Задание на лабораторную работу №1

- 1. Ознакомиться с форматом команды микропроцессора Intel 80386 (Приложение 1).
 - 2. Заполнить таблицу формата команды двоичными кодами полей.

1.4 Ход работы

В процессе работы выполнить следующие действия:

- 1) включить компьютер;
- 2) загрузить программную модель выполнения команд микропроцесcopa Intel 80386];
- 3) выбрать команды пересылки данных из памяти в регистра в память;

- 4) заполнить таблицу формата команд двоичными кодами полей;
- 5) представить результаты работы преподавателю в устной форме.

1.5 Выполнение команды пересылки данных из памяти в регистр

Результаты выполнения команды пересылки данных из памяти в регистр приведены на рис. 1.

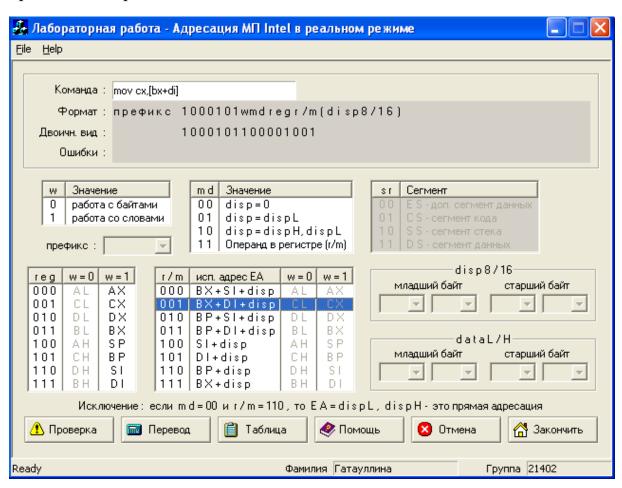


Рисунок 1 – Пример пересылки данных из памяти в регистр

Данная команда пересылки **mov** \mathbf{cx} , $[\mathbf{bx}+\mathbf{di}]$, пересылает данные из второго операнда $[\mathbf{bx}+\mathbf{di}]$, в регистр \mathbf{cx} .

Поскольку указан регистр $\mathbf{c}\mathbf{x}$, то это означает, что работа будет со словами, соответственно бит \mathbf{w} выбираем равным единице: $\mathbf{w}=\mathbf{1}$.

Так как бит w=1 и мы работаем с регистром cx, тогда reg устанавливаем равным 001, согласно Таблице 2: reg=001.

Поскольку второй операнд [bx+di], указывает базово-индексную адресацию, то согласно Таблице 2 устанавливаем md=00, r/m=001.

1.6 Выполнение команды пересылки данных из регистра в память

Результаты выполнения команды пересылки данных из регистра в память приведены на рис. 2.

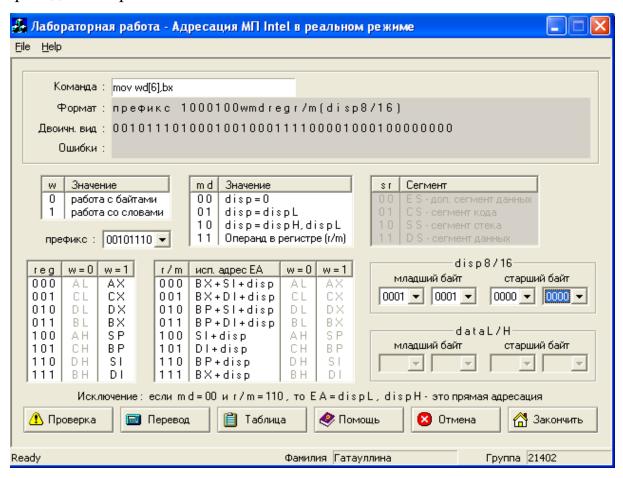


Рисунок 2 – Пример пересылки данных из регистра в память

Данная команда пересылки **mov wd[6], bx** пересылает данные из регистра **bx** в ячейку памяти, помеченную меткой **wd.**

В команде указано смещение +6. Поскольку указан регистр \mathbf{bx} , то это означает, что работа будет со словами, соответственно бит \mathbf{w} выбираем равным единице: $\mathbf{w} = \mathbf{1}$.

В таблице метка **wd** является данным и имеет внутреннее смещение +11, тогда общее смещение устанавливаем равное 6+11=+17 (**0001 0001**).

0001	0001

Поскольку метка со смещением означает прямую адресацию, то устанавливаем: md=00, r/m=110.

1.7 Представление результатов работы

По окончанию лабораторной работы студент представляет результаты преподавателю в устной форме

Выводы

В результате выполнения данной лабораторной работы приобретены навыки представления в машинном коде команд пересылки данных из памяти в регистр и из регистра в память микропроцессора Intel 80386.

Список литературы

- 1. Гуров В.В. Микропроцессорные системы: Учеб.пособие. –М.: ИНФРА-М, 2017. 336 с. + Доп.материалы/ Электронный ресурс; Режим доступа http://www.znanium.com]. –(Высшее образование: Бакалавриат).
- 2. Русанов, В.В. Микропроцессорные устройства и системы [Электронный ресурс] : учеб. пособие / В.В. Русанов, М.Ю. Шевелев. Электрон. дан. Москва : ТУСУР, 2012. 184 с. Режим доступа: https://e.lanbook.com/book/10931. Загл. с экрана.
- 3. Борисов, В.В. Нечеткие модели и сети [Электронный ресурс] : учеб. пособие / В.В. Борисов, В.В. Круглов, А.С. Федулов. Электрон. дан. Москва : Горячая линия-Телеком, 2012. 284 с. Режим доступа: https://e.lanbook.com/book/5126. Загл. с экрана.

2 Лабораторная работа №2 «Команды пересылки данных микропроцессора Intel в память и данных в регистр»

2.1 Цель работы

Целью настоящей лабораторной работы является изучение способов пересылки данных микропроцессора Intel 80386 в память и пересылки данных в регистр.

2.2 Общие положения

В лабораторной работе №1 задаются команды пересылки данных в память и пересылки данных в регистр в виде формулы на языке Ассемблера.

В соответствии с заданной формулой команды необходимо заполнить таблицу формата команды двоичными кодами полей.

2.3 Задание на лабораторную работу №2

- 1. Ознакомиться с форматом команды микропроцессора Intel 80386 (Приложение 1).
 - 2. Заполнить таблицу формата команды двоичными кодами полей.

2.4 Ход работы

В процессе работы выполнить следующие действия:

- 3) включить компьютер;
- 4) загрузить программную модель выполнения команд микропроцесcopa Intel 80386];
- 3) выбрать команды пересылки данных в память и пересылки данных в регистр;

- 4) заполнить таблицу формата команд двоичными кодами полей;
- 5) представить результаты работы преподавателю в устной форме.

2.5 Выполнение команды пересылки данных в память

Результаты выполнения команды пересылки данных в память приведены на рис. 1.

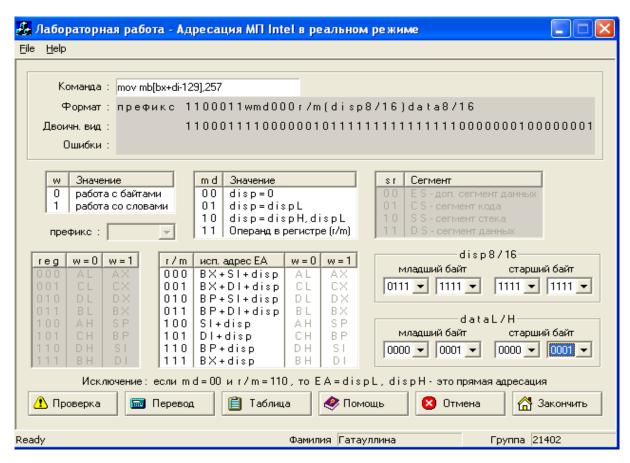


Рисунок 1 – Пример пересылки данных в память

Данная команда **mov mb[bx+di-129], 257** пересылает число 257 в ячейку памяти, помеченную меткой **mb**.

Поскольку указано символическое имя mb, то это означает, что работа будет со словами, соответственно бит w выбираем равным единице: w=1.

В таблице метка **mb** указывает на ячейку с данными и не имеет внутреннего смещения, тогда общее смещение устанавливаем равное **-129** (**0111 1111 1111**).

0111	1111	1111	1111
------	------	------	------

Переводим число, которое нам надо переслать в ячейку памяти **mb**, то есть 257, в двоичный код и записываем его в поле DateL/H (**0000 0001 0000 0001**).

0000	0001	0000	0001

Поскольку второй операнд **[bx+di-129]**, указывает базово-индексную адресацию, то согласно Таблице 2 устанавливаем **md=10**, **r/m=001**.

2.6 Выполнение команды пересылки данных в регистр

Результаты выполнения команды пересылки данных в регистр приведены на рис.2.

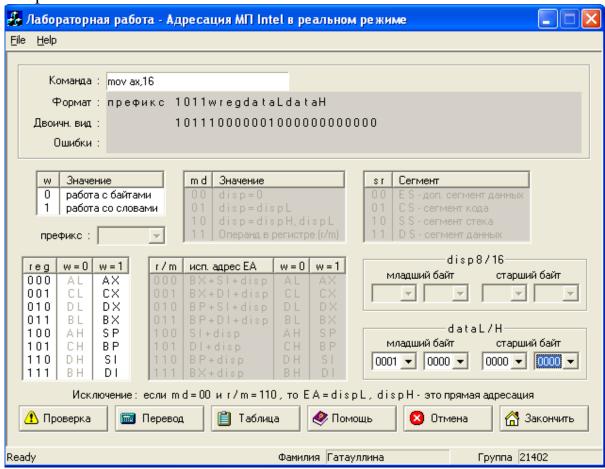


Рисунок 2 – Пример пересылки данных в регистр

Данная команда пересылки **mov ax, 16** пересылает данные в регистр.

Поскольку указан регистр $\mathbf{a}\mathbf{x}$, то это означает, что работа будет со словами, соответственно бит \mathbf{w} выбираем равным единице: $\mathbf{w} = \mathbf{1}$.

Переводим число, которое нам надо переслать в регистр **ax**, то есть 16 в двоичный код и вставляем его в поле DateL/H (**0001 0000 0000 0000**).

0001	0000	0000	0000

Так как бит w=1 и мы работаем с регистром ax, тогда reg устанавливаем равным 000, согласно Таблице 2: reg=000.

В данном примере используется непосредственный способ адресации, так как операнд является константой.

2.7 Представление результатов работы

По окончанию лабораторной работы студент представляет результаты преподавателю в устной форме

Выводы

В результате выполнения данной лабораторной работы приобретены навыки представления в машинном коде команд пересылки данных в память и команд пересылки данных в регистр микропроцессора Intel 80386.

Список литературы

- 1. Гуров В.В. Микропроцессорные системы: Учеб.пособие. –М.: ИНФРА-М, 2017. 336 с. + Доп.материалы/ Электронный ресурс; Режим доступа http://www.znanium.com]. –(Высшее образование: Бакалавриат).
- 2. Русанов, В.В. Микропроцессорные устройства и системы [Электронный ресурс] : учеб. пособие / В.В. Русанов, М.Ю. Шевелев. Электрон. дан. Москва : ТУСУР, 2012. 184 с. Режим доступа: https://e.lanbook.com/book/10931. Загл. с экрана.
- 3. Борисов, В.В. Нечеткие модели и сети [Электронный ресурс] : учеб. пособие / В.В. Борисов, В.В. Круглов, А.С. Федулов. Электрон. дан. Москва : Горячая линия-Телеком, 2012. 284 с. Режим доступа: https://e.lanbook.com/book/5126. Загл. с экрана.

3 Лабораторная работа №3 «Команды пересылки данных микропроцессора Intel из аккумулятора в память и из памяти в аккумулятор»

3.1 Цель работы

Целью настоящей лабораторной работы является изучение способов пересылки данных микропроцессора Intel 80386 из аккумулятора в память и из памяти в аккумулятор.

3.2 Общие положения

В лабораторной работе №3 задаются команды пересылки данных из аккумулятора в память и из памяти в аккумулятор в виде формулы на языке Ассемблера.

В соответствии с заданной формулой команды необходимо заполнить таблицу формата команды двоичными кодами полей.

3.3 Задание на лабораторную работу №3

- 1. Ознакомиться с форматом команды микропроцессора Intel 80386 (Приложение 1).
 - 2. Заполнить таблицу формата команды двоичными кодами полей.

3.4 Ход работы

В процессе работы выполнить следующие действия:

- 5) включить компьютер;
- 6) загрузить программную модель выполнения команд микропроцесcopa Intel 80386];

- 3) выбрать команды пересылки данных из аккумулятора в память и из памяти в аккумулятор;
 - 4) заполнить таблицу формата команд двоичными кодами полей;
 - 5) представить результаты работы преподавателю в устной форме.

3.5 Выполнение команды пересылки данных из памяти в аккумулятор

Результаты выполнения команды пересылки данных из памяти в аккумулятор приведены на рис.1.

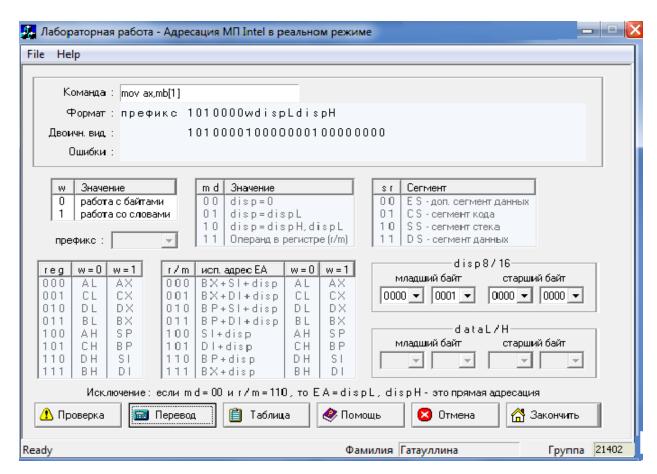


Рисунок 1 – Пример пересылки данных из памяти в аккумулятор

Данная команда **mov ax,mb[1]** пересылает данные из ячейки памяти, помеченной меткой **mb**, в аккумулятор **ax**.

Поскольку указано символическое имя mb, то это означает, что работа будет со словами, соответственно бит w выбираем равным единице: w=1.

В данном примере используется прямой способ адресации.

В таблице метка **mb** указывает на ячейку с данными и не имеет внутреннего смещения, тогда общее смещение устанавливаем равное

1 (0000 0000 0000 0001).

0000	0000	0000	0001
------	------	------	------

3.6 Выполнение команды пересылки данных из аккумулятора в память

Результаты выполнения команды пересылки данных из аккумулятора в память приведены на рис.2.

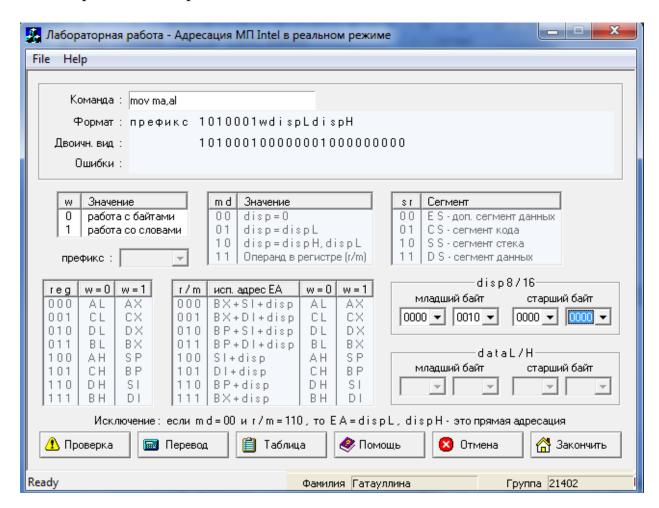


Рисунок 1 – Пример пересылки данных из аккумулятора в память

Данная команда пересылки **mov ma, al** пересылает данные из ячейки памяти, помеченную меткой **ma,** в аккумулятор **al.**

Поскольку указан регистр \mathbf{al} , то это означает, что работа будет с байтами, соответственно бит \mathbf{w} выбираем равным нулю: $\mathbf{w} = \mathbf{0}$.

В данном примере используется прямой способ адресации.

В таблице метка **та** указывает на ячейку с данными и имеет внутреннее смещение равное **2** (0000 0000 0000 0010).

0000	0000	0000	0010
------	------	------	------

3.7 Представление результатов работы

По окончанию лабораторной работы студент представляет результаты преподавателю в устной форме

Выводы

В результате выполнения данной лабораторной работы приобретены навыки представления в машинном коде команд пересылки данных из памяти в аккумулятор и команд пересылки данных из аккумулятора в память микропроцессора Intel 80386.

Список литературы

- 1. Гуров В.В. Микропроцессорные системы: Учеб.пособие. –М.: ИНФРА-М, 2017. 336 с. + Доп.материалы/ Электронный ресурс; Режим доступа http://www.znanium.com]. –(Высшее образование: Бакалавриат).
- 2. Русанов, В.В. Микропроцессорные устройства и системы [Электронный ресурс] : учеб. пособие / В.В. Русанов, М.Ю. Шевелев. Электрон. дан. Москва : ТУСУР, 2012. 184 с. Режим доступа: https://e.lanbook.com/book/10931. Загл. с экрана.
- 3. Борисов, В.В. Нечеткие модели и сети [Электронный ресурс] : учеб. пособие / В.В. Борисов, В.В. Круглов, А.С. Федулов. Электрон. дан. Москва : Горячая линия-Телеком, 2012. 284 с. Режим доступа: https://e.lanbook.com/book/5126. Загл. с экрана.

4 Лабораторная работа №4 «Команды пересылки данных микропроцессора Intel из памяти в сегментный регистр и из сегментного регистра в аккумулятор»

3.1 Цель работы

Целью настоящей лабораторной работы является изучение способов пересылки данных микропроцессора Intel 80386 из памяти в сегментный регистри из сегментного регистра в аккумулятор.

3.2 Общие положения

В лабораторной работе №4 задаются команды пересылки данных из памяти в сегментный регистр и из сегментного регистра в аккумулятор в виде формулы на языке Ассемблера.

В соответствии с заданной формулой команды необходимо заполнить таблицу формата команды двоичными кодами полей.

3.3 Задание на лабораторную работу №4

- 1. Ознакомиться с форматом команды микропроцессора Intel 80386 (Приложение 1).
 - 2. Заполнить таблицу формата команды двоичными кодами полей.

4.4 Ход работы

В процессе работы выполнить следующие действия:

- 1) включить компьютер;
- 2) загрузить программную модель выполнения команд микропроцессора Intel 80386];

- 3) выбрать команды пересылки данных из памяти в сегментный регистр и из сегментного регистра в аккумулятор;
 - 4) заполнить таблицу формата команд двоичными кодами полей;
 - 5) представить результаты работы преподавателю в устной форме.

4.5 Команда пересылки данных из памяти в сегментный регистр

Результаты выполнения команды пересылки данных из памяти в сегментный регистр приведены на рис.1.

Рисунок 1 – Пример пересылки данных из памяти в сегментный регистр

Данная команда **mov ss, [bx+si+7]** пересылает данные из ячейки памяти с базово-индексной адресацией [bx+si+7], то согласно Таблице 2 устанавливаем md=01 r/m=000.

Смещение устанавливаем равное 7 (0000 0111)

0000	0111

Так как используется сегментный регистр ss (сегмент стека), sr устанавливаем равным 10: sr=10.

4.6 Команда пересылки данных из сегментного регистра в аккумулятор

Результаты выполнения команды пересылки данных из сегментного регистра в аккумулятор приведены на рис.2.

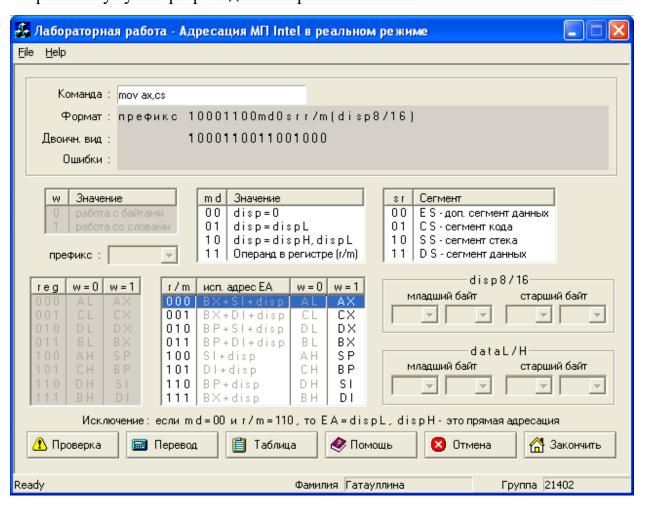


Рисунок 2 – Пример пересылки данных из сегментного регистра в аккумулятор

Данная команда пересылки **mov ax, с**s пересылает данные из регистра **ax** в сегментный регистр **cs.**

В данном примере используется регистровый прямой способ адресации.

Поскольку операнд находится в регистре, то **md** устанавливаем равным 11 и r/m соответственно 000: **md= 11 \text{ r/m}=000.**

Так как используется сегментный регистр **cs** (сегмент кода), **sr** устанавливаем равным 01: **sr**=01.

4.7 Представление результатов работы

По окончанию лабораторной работы студент представляет результаты преподавателю в устной форме

Выводы

В результате выполнения данной лабораторной работы приобретены навыки представления в машинном коде команд пересылки данных из памяти в сегментный регистр и команд пересылки данных из сегментного регистра в аккумулятор микропроцессора Intel 80386

Список литературы

- 1. Гуров В.В. Микропроцессорные системы: Учеб.пособие. –М.: ИНФРА-М, 2017. 336 с. + Доп.материалы/ Электронный ресурс; Режим доступа http://www.znanium.com]. –(Высшее образование: Бакалавриат).
- 2. Русанов, В.В. Микропроцессорные устройства и системы [Электронный ресурс] : учеб. пособие / В.В. Русанов, М.Ю. Шевелев. Электрон. дан. Москва : ТУСУР, 2012. 184 с. Режим доступа: https://e.lanbook.com/book/10931. Загл. с экрана.
- 3. Борисов, В.В. Нечеткие модели и сети [Электронный ресурс] : учеб. пособие / В.В. Борисов, В.В. Круглов, А.С. Федулов. Электрон. дан. Москва : Горячая линия-Телеком, 2012. 284 с. Режим доступа: https://e.lanbook.com/book/5126. Загл. с экрана.

Формат команды микропроцессора Intel 80386

Команда микропроцессора Intel 80386 может быть короткой один байт или длинной в несколько байтов. Обязательным является только байт кода операции. Код операции задаёт основные действия, которые выполняет данная команда, все остальные поля, так или иначе, связаны с адресацией операнда.

Префикс имеет размер в один байт и указывает на то, какой из сегментных регистров будет использоваться.

В зависимости от состояния битов **SR поля префикса** выбирается сегментный регистр:

SR=00 - ES дополнительный сегмент данных;

SR=01 - CS сегмент команд;

SR=10 - SS сегмент стека;

SR=11 - DS сегмент данных.

Состояние разрядов постбайта задает режимы адресации операндов.

Один из разрядов постбайта указывает на режим работы с байтами или словами, этот разряд имеет обозначение **W**, при

W=1 –работаем со словами

W=0 –работаем с байтами

При работе со словами используется обозначение регистров:

AX, BX, CX, DX, SP, BP, SI, DI

При работе с байтами используется байтовая часть регистров:

AH, AL, BH, BL, CH, CL, DH, DL

Следующие за постбайтом два байта смещения задают необходимое смещение внутри команды DispH DispL.

Использование варианта смещения задаётся группой битов **md** (Mode).

Таким образом, поле **md** задает режим адресации операндов. Это поле используется вместе со следующим полем **r/m** (register memory). Совместное использование этих двух полей позволяет определить способ адресации операнда.

Если md=11 – операнд содержится в регистре.

Во всех остальных случаях операнды находятся в памяти, в этом случае значение кода **md** определяет величину смещения, которое задается в следующих байтах команды DispH DispL:

md=00 - disp=0 - смещение равно нулю;

md=01 – dispL - используется восьмибитовое смещение, т.е. используется один младший байт поля смещения;

md=10 – dispHdispL - используется шестнадцатиразрядное смещение.

Если величина численного значения смещения, заданного командой языка ассемблера, не превышает значения **127** для положительных значений или 128 -для отрицательных, то смещение задается байтом ($\mathbf{md} = 01$), иначе – словом ($\mathbf{md} = 10$). При нулевом значении смещения, байты смещения в машинном коде не используются ($\mathbf{md} = 00$).

Существует исключение: если задается прямая адресация:

md=00; rm=110; disdLdispH — является адресом операнда.

Если в формуле команды используется символическое имя (метка), то смещение (disp) всегда имеет размерность слова (2 байта) и в постбайте значение **md** следует задать равным **md=10**.

DOTITOR	TOOTITIO	адресации
Сколная	таспина	альскании
СБОДПал	таолица	идросиции
r 1	7	r 1

r/m	md		
	00	01	10
000	(BX)+(SI)	(BX+SI)+disp8	(BX+SI)+ disp16
001	(BX)+(DI)	(BX+DI)+ disp8	(BX+DI)+ disp16
010	(BP)+(SI)	(BP+SI)+ disp8	(BP+SI)+ disp16
011	(BP)+(DI)	(BP+DI)+ disp8	(BP+DI)+disp16

100	(SI)	(SI)+ disp8	(SI)+disp16
101	(DI)	(DI)+ disp8	(DI)+ disp16
110	disp16	(BP)+ disp8	(BP)+ disp16
111	(BX)	(BX)+disp8	(BX)+ disp16

Поле reg занимает 3 разряда и следует в команде за полем **md.**

В зависимости от значения поля \mathbf{reg} выбирается регистр, с которым будет выполняться операция. На выбор регистра соответствующим образом влияет бит \mathbf{W} .

red	w=0	w=1
000	AL	Ax
001	CL	Cx
010	DL	Dx
011	BL	Bx
100	AH	SP
101	СН	BP
110	DH	SI
111	ВН	DI

Поле для задания данных DateH и DateL

Эти поля служат для задания данных, т.е. операндов внутри команды.

Таким образом, операнд может быть размер слова или размер байта. Данные в команду помещаются при использовании непосредственной адресации. В случае байтовой операции (\mathbf{W} =0) непосредственное значение байтового операнда располагается в байте \mathbf{DateL} , если команда работает со словом, т.е. \mathbf{W} =1, то используются оба поля \mathbf{DateH} и \mathbf{DateL} .

В исходном тексте программы на языке Ассемблер (формуле команды) данные и смещения записываются в десятичном виде, а в машинный код команды их нужно поставить в двоичном виде. Для перевода десятичных чисел в

двоичные в программной модели имеется специальная таблица перевода, отрицательные числа записываются в особом виде.

Для задания размерности операндов в ассемблере Intel существует специальный оператор указания типа операнда **PTR**.

Bate **PTR** Alfa; - переменная Alfa имеет размер байта;

Word **PTR** Delta; - переменная Delta имеет размер слова.

В программной модели команд микропроцессора Intel 80386 используются некоторые команды, которые работают с ячейками памяти, помеченными метками. В этом случае необходимо обратиться к таблице значений меток, в которой показано, какое значение имеет данная метка.

Hanpuмep: ma Byte Date 0002

Запись означает, что данная ячейка **ma** содержит операнд байтовой размерности, т.е. с этим операндом должна выполняться операция байтовой размерности (**W**=0). Слово **Date** означает, что операнд представляет собой данные и для его адресации необходимо выбрать сегмент данных **DS**. Кроме того, внутри этой ячейки находится смещение $+2_{16}$, т.е. при нахождении смещения (disp) для адресации операнда смещение в формуле команды алгебраически складывается с этим внутренним смещением.

Министерство науки и высшего образования Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ»

(КНИТУ-КАИ)

Чистопольский филиал «Восток»

Кафедра Приборостроения

Отчет

по лабораторной работе № 1

по дисциплине «Электроника и микропроцессорная техника»

Команды пересылки данных микропроцессора Intel:

память → регистр;

регистр → память

Выполнил

ст. группы 21401 Петров И.И.

Проверил

ст. преподаватель Панин О.А.

г. Чистополь

2023 г.

Отчет

по лабораторной работе № 2

по дисциплине «Электроника и микропроцессорная техника»

Команды пересылки данных микропроцессора Intel:

данные в память;

данные в регистр

Отчет

по лабораторной работе № 3

по дисциплине «Электроника и микропроцессорная техника»

Команды пересылки данных микропроцессора Intel:

из аккумулятора в память

из памяти в аккумулятор

Отчет

по лабораторной работе № 4

по дисциплине «Электроника и микропроцессорная техника»

Команды пересылки данных микропроцессора Intel:

из памяти в сегментный регистр

из сегментного регистра в аккумулятор