Документ подписан простой электронной подписью Информация о владельце:

ФИО: Прохоров Сергей Грудовин ИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ Должность: Председатель УМК РОССИЙСКОЙ ФЕДЕРАЦИИ

Дата подписания: 05.09.2024 10:41:21

Уникальный программный ключ: восудар ственное бюджетное образовательное учреждение b1cb3ce3b5a8850f02c3b25.49bc691893e7a6284 высшего образования «Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ»

Чистопольский филиал «Восток»

(наименование института (факультета, филиала)

Кафедра приборостроения

(наименование кафедры разработчика)

УТВЕРЖДЕНО: Ученым советом КНИТУ-КАИ (в составе ОП ВО)

КОМПЛЕКТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ

по дисциплине (модулю)

Б1.В.16 Электронные приборы

(индекс дисциплины по учебному плану, наименование дисциплины)

Комплект оценочных материалов по дисциплине (модулю) разработан для обучающихся всех форм обучения по направлению подготовки (специальности):

Код и наименование направления	Направленность (профиль, специализация,
подготовки (специальности)	магистерская программа)
12.03.01 Приборостроение	Приборостроение

Разработчик(и):

Прохоров Сергей Григорьевич, доцент, к.т.н.

Комплект оценочных материалов по дисциплине (модулю) рассмотрен на заседании кафедры приборостроения, протокол № 9 от 26.05.2023 г.

Заведующий кафедрой

Прохоров Сергей Григорьевич, доцент, к.т.н.

1 ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Текущий контроль успеваемости обеспечивает оценивание хода освоения дисциплины (модуля).

Промежуточная аттестация предназначена для оценки достижения запланированных результатов обучения по завершению изучения дисциплины (модуля) и позволяет оценить уровень и качество ее освоения обучающимися.

Комплект оценочных материалов представляет собой совокупность оценочных средств (комплекс заданий различного типа с ключами правильных ответов, включая критерии оценки), используемых при проведении оценочных процедур (текущего контроля, промежуточной аттестации) с целью оценивания достижения обучающимися результатов обучения по дисциплине (модулю).

1.1 Оценочные средства и балльные оценки для контрольных мероприятий

Таблица 1.1 Объем дисциплины (модуля) для очной формы обучения

•	ပ					В	иды уч	ебной ј	работь	I			
	лдуля), в ЗЕ/час	3	npe	гподав	ая рабо гателем диторн	по вис	дам уче	ебных		чающе	оятели ггося (в бота),	неауди	торная
Семестр	Общая трудоемкость дисциплины (модуля), в	Лекции	Лабораторные работы	Практические занятия	Курсовая работа (консультация, защита)	Курсовой проект (консультации, защита)	Консультации перед экзаменом	Контактная работа на промежуточной аттестации	Курсовая работа (подготовка)	Курсовой проект (подготовка)	Проработка учебного материала (самоподготовка)	Подготовка к промежуточнойаттестации	Форма промежуточной аттестации
4	2 3E/72	16	-	16	-	-	-	0,25	-	-	39,75	-	зачет
Итого	2 3E/72	16	-	16	-	-	-	0,25	-	-	39,75	-	

Таблица 1.1, δ – Объем дисциплины (модуля) для заочной формы обучения

	я),					В	иды уч	ебной	работь	I			
	дисциплины (модуля), 3/час		пре	еподав	ая рабо ателем Эиторн	по вид	ам уче	ебных		чающе	оятели ггося (в бота),	неауди	торная
Семестр	Общая трудоемкость дисциі в ЗЕ/час	Лекции	Лабораторные работы	Практические занятия	Курсовая работа (консультация, защита)	Курсовой проект (консультации, защита)	Консультации перед экзаменом	Контактная работа на промежуточной аттестации	Курсовая работа (подготовка)	Курсовой проект (подготовка)	Проработка учебного материала (самоподготовка)	Подготовка к промежуточной аттестации	Форма промежуточной аттестации
5	2 3E/72	4	-	8	-	-	-	0,35	-	-	56	3,65	зачет
Итого	2 3E/72	4	-	8	-	-	-	0,35	-	-	56	3,65	

Текущий контроль успеваемости и промежуточная аттестация по дисциплине (модулю) осуществляется в соответствии с балльно-рейтинговой системой по 100-балльной шкале. Балльные оценки для контрольных мероприятий представлены в таблице 1.2. Пересчет суммы баллов в традиционную оценку представлен в таблице 1.3.

Таблица 1.2 Балльные оценки для контрольных мероприятий

Наименование контрольного мероприятия	Максимальный балл на первую аттестацию	Максимальный балл за вторую аттестацию	Максимальный балл за третью аттестацию	Всего за семестр
		4 семестр		
Тестирование	5	5		10
Выполнение	10	30		40
индивидуальных				
(домашних) заданий				
Итого (максимум за	15	35		50
период)				
Зачет				50
Итого				100

Таблица 1.3 Шкала оценки на промежуточной аттестации

Выражение в баллах	Словесное выражение при форме промежуточной аттестации - зачет	Словесное выражение при форме промежуточной аттестации – экзамен, зачет с оценкой
от 86 до 100	Зачтено	Отлично
от 71 до 85	Зачтено	Хорошо
от 51 до 70	Зачтено	Удовлетворительно
до 51	Не зачтено	Неудовлетворительно

Форма и организация промежуточной аттестации по итогам освоения дисциплины — зачет проводится два этапа: тестирование и устные ответы на экзаменационные вопросы.

2 Оценочные средства для проведения текущего контроля

2.1 Тестовые вопросы

Тестовые вопросы содержат следующие типы вопросов с соответствующим количеством баллов за правильный ответ:

Тип вопроса	Количество баллов за правильный ответ
запрос выбора вариантов ответа	1
запрос нескольких ответов	 1 -при выборе всех правильных 0,5 – за 2 правильных из 3 0,25 – за 1 правильный из 3 0,5 – за 1 правильный из 2
запрос ввода пропущенного текста	1

No	Сем	No	Вопрос	Варианты ответа	Ключ
Π/Π	естр	Атте			
		стац			
		ИИ			
1	4	1	Показать полярности		а
			напряжений для прямого и		
			обратного включения		
			полупроводникового диода:		
2	4	1	Как соотносятся (больше, меньше) статические	$R_{\text{ct. }A} > R_{\text{ct. }B} < R_{\text{ct. }C}$	-
			сопротивления	$R_{\text{ct. }C} < R_{\text{ct. }A} < R_{\text{ct. }B}$	-
			полупроводникового диода в точках A , B , C ? (Точка A на	$R_{\text{ct. }A} > R_{\text{ct. }B} > R_{\text{ct. }C}$	+
			обратной, точки B , C на прямой ветви BAX):	$R_{\text{ct. }B} > R_{\text{ct. }C} > R_{\text{ct. }A}$	-
			примон ветви вису.	$R_{\text{ct. }B} = R_{\text{ct. }C} > R_{\text{ct. }A}$	-
			↓ _R		
			A U		
	4	1	-		
3	4	1	Выпрямительные диоды	постоянного тока в переменное	-
			предназначены для	напряжение	
			преобразования:	переменного сопротивления в	-
				постоянное	
				постоянного напряжения в	_
				переменное напряжение	
				переменного тока в постоянное напряжение	_
				переменного тока в постоянный	+
4	4	1	В основе диода лежит:	р-п-переход	+
¬	•	1	В основе диода лежит.	*	-
]			два <i>р-п</i> -перехода	_

				TORONO TITO OD O TIVINA TIVO TOVOTO TIVA	
				переход проводник-диэлектрик	-
				полупроводник с дырочной	-
				электропроводностью	
				полупроводник с электронной	-
				проводимостью	
5	4	1	Выберите схему включения		г
			стабилитрона с нагрузкой:		
			- R ₆ + + +		
			E VD R_{H} U_{n} E VD R_{H} U_{n}		
			+ R6 + + R6 +		
			E VD R_{ii} U_{ii} E VD R_{ii} U_{ii}		
6	4	1	Полупроводниковые	преобразования переменного	-
			стабилитроны	напряжения в постоянное	
			предназначены для:	напряжение	
				выпрямления постоянного	-
				напряжения в переменное	
				напряжение	
				для стабилизации тока	_
				для стабилизации $U_{\text{вх}}$	_
				для стабилизации $U_{\text{вых}}$	+
7	4	1	Эквивалентная	ды отистынации с вых	a
,	•	1	электрическая схема		ч
			замещения диода		
			изображена:		
			C		
			a 6 8		
8	4	1	Принцип стабилизации	при большом изменении тока	+
	•	•	стабилитрона:	напряжение на стабилитроне	•
			Craomirpona.	меняется незначительно	
				при небольшом изменении тока	_
				напряжение на стабилитроне	_
				меняется незначительно	
				при увеличении входного	_
				напряжения $U_{\text{вх}}$ напряжение на стабилитроне $U_{\text{вых}}$ меняется	
				незначительно	
				_	
				сопротивление стабилитрона	-
				меняется скачкообразно	
				сопротивление стабилитрона	-
				уменьшается с повышением	
0	1	1	D avanta —	температуры	
9	4	1	В схеме параметрического	VD	-
			стабилизатора напряжения	R_6	+
			при увеличении входного	$R_{ m H}$	-
			напряжения $U_{\rm BX}$, изменение	сопротивление проводов	-
			напряжения $\Delta U_{\text{вх}}$ в основном	равномерно на всех элементах	-

			падает на:	схемы	
10	4	1	При увеличении	не изменяется	-
			сопротивления $R_{\rm H}$ ток через	уменьшается	-
			$VD_{I_{CT}}$:	увеличивается	+
				сначала увеличивается, потом	_
				уменьшается	
				сначала уменьшается, потом	_
				увеличивается	
11	4	1	Рабочим участком	прямая ветвь ВАХ	_
11	•	1	стабистора на вольт-	обратная ветвь ВАХ	_
			амперной характеристике	прямая и обратная ветви ВАХ	_
			(ВАХ) является:	участок на обратной ветви ВАХ	_
			(БИХ) является.	• •	
10	4	1		участок на прямой ветви ВАХ	+
12	4	1	Рабочим участком	участок на прямой ветви ВАХ	
			стабилитрона на вольт-	участок на обратной ветви ВАХ	
			амперной характеристике	обратная ветвь ВАХ	
			(ВАХ) является:	прямая ветвь ВАХ	
			,	прямая и обратная ветви ВАХ	
13	4	1	Какое физическое явление	туннельный пробой р-п-	-
			лежит в основе работы	перехода	
			стабилитрона:	лавинный пробой <i>p-n-</i> перехода	-
				тепловой пробой <i>р-п</i> -перехода	-
				электрический пробой <i>p-n-</i>	+
				перехода	
				правильный ответ отсутствует	-
14	4	1	Чем ограничивается	напряжением источника	+
			максимальное значение	питания	
			сопротивления R_6 в схеме	значением тока в цепи	-
			стабилизатора напряжения:	значением сопротивления	-
				нагрузки $R_{\scriptscriptstyle m H}$	
				коэффициентом стабилизации	-
				стабилитрона	
				значением сопротивления	_
				стабилитрона	
15	4	1	ВАХ туннельного диода	наличием участка	_
10	•	•	характеризуется:	положительного	
				дифференциального	
				сопротивления	
				наличием участка	+
				отрицательного	'
				дифференциального	
				сопротивления	
				отсутствием участка	
				дифференциального	-
				сопротивления	
					_
				участком гистерезиса	-
1.6	4	1	L'avera	правильный ответ отсутствует	-
16	4	1	Какие полупроводниковые	чистые	-
			материалы применяются при	только і-типа	-
			изготовлении	только <i>п</i> -типа;	-
			полупроводниковых	только <i>p</i> -типа	-

			приборов (диодов):	примесные	+
17	4	1	Какие носители заряда	дырки	_
			создают ток при прямом	электроны	_
			смещении <i>p-n</i> -перехода:	основные	+
				неосновные	_
				электроны и дырки	_
18	4	1	Каково соотношение между	$R_{\rm lip} < R_{ m ofp}$	_
10	-	_	прямым $R_{\rm пр}$ и обратным $R_{\rm обр}$	$R_{\rm np} << R_{ m o6p}$	+
			сопротивлениями у	$R_{\rm np} > R_{ m ofp}$	<u> </u>
			выпрямительного диода:	$R_{\rm np} >> R_{ m ofp}$	_
				$R_{\text{IIP}} = R_{\text{OSP}}$	_
19	4	1	Какое свойство р-п перехода	односторонняя проводимость	+
1)	7	1	используется в	барьерная емкость	
			выпрямительных диодах:	тепловой пробой	_
			выпримительных днодах.	электрический пробой	_
				туннельный эффект	
				туннельный эффект	_
20	4	1	На рисунке изображено	обратное	
20	'	1	включение диода:	прямое	+
				инверсное	_
			$p \mid n \mid$	высокоомное	_
				в отсечке	_
				B ofee ike	
			(+)		
21	4	1	На рисунке изображен:	диод	+
			па рисупке изображен.	стабилитрон	-
				варикап	-
				туннельный диод	-
				стабистор	-
22	4	1	Графическое изображение		∂
			варикапа:		
			а б в г д		
23	4	1	Графическое изображение		г
			стабилитрона:		
			а б в г д		
24	4	1	Графическое изображение		в
			туннельного диода:		
			a δ ε ε δ		
25	4	1	Графическое изображение		д
			фотодиода:		
		<u> </u>			
					

					1
			→ → → → → · · · · · · · · · · · · · · ·		
			a 6 6 2 0		
2.5					
26	4	1	При прямом включении	барьерная	-
			полупроводникового диода	диффузионная	+
			возникает емкость:	диодная	-
				дырочная	-
				электронная	-
27	4	1	При обратном включении	барьерная	-
			полупроводникового диода	диффузионная	_
			возникает емкость:	диодная	-
				дырочная	+
				электронная	_
28	4	1	Основной недостаток	резкая зависимость от нагрузки	_
20	•	•	полупроводникового диода:	зависимость от температуры	+
			полупроводинкового днода.	характеристики диода не	_
					_
				зависят от температуры высокая себестоимость	
20	4	1		все выше перечисленное	-
29	4	1	Частота пульсаций	равна частоте выпрямляемого	+
			напряжения на выходе	переменного напряжения	
			однополупериодного	больше частоты выпрямляемого	-
			выпрямителя:	переменного напряжения	
				меньше частоты	-
				выпрямляемого переменного	
				напряжения	
				равна удвоенной частоте	-
				выпрямляемого переменного	
				напряжения	
				равна половине частоты	-
				выпрямляемого переменного	
				напряжения	
30	4	1	На основе какого	термоэлектронной эмиссии	-
			физического явления	рекомбинации носителей заряда	-
			работает фотодиод:	под действием квантов света	
				генерации носителей заряда под	+
				действием квантов света	
				генерации носителей заряда под	_
				действием приложенного к	
				фотодиоду напряжения	
				пьезоэффекта	_
31	4	1	В состав	один диод и конденсатор	_
	•	_	двухполупериодного	два диода и трансформатор	
			выпрямителя, выполненного	два диода, трансформатор с	
			по мостовой схеме, входят	выводом от средний точки	-
				выводом от среднии точки вторичной обмотки и	
				_	
				конденсатор	1
				четыре диода и конденсатор	+
				один диод, конденсатор и	-
				резистор	
32	4	1	Выберите вольт-фарадную		б

			характеристику (ВФХ) барьерной емкости полупроводникового диода $C_{\text{бар}} = f(U_{\pi})$		
33	4	1	Выпрямительные диоды предназначены:	для преобразования постоянного тока в сигналы переменного тока для выпрямления переменного тока для усиления электрических сигналов постоянного тока для стабилизации тока для стабилизации напряжения	- + - -
34	4	1	Частота пульсаций напряжения на выходе двухполупериодного выпрямителя:	равна частоте выпрямляемого переменного напряжения в 4 раза больше частоты выпрямляемого переменного напряжения меньше частоты выпрямляемого переменного напряжения равна удвоенной частоте выпрямляемого переменного напряжения равна половине частоты выпрямляемого переменного	- +
35	4	2	Биполярным транзистором называется:	напряжения трехэлектродный полупроводниковый прибор, структура которого содержит три <i>p-n</i> перехода трехэлектродный прибор, структура которого содержит один электронно-дырочный переход	-
				двухэлектродный прибор, полупроводниковый прибор, структура которого содержит два электронно-дырочных перехода последовательно	-

			T		
				соединенных электронно-	
				дырочных перехода	
				трехэлектродный	+
				полупроводниковый прибор,	
				структура которого содержит	
				два электронно-дырочных	
				перехода	
36	4	2	В транзисторе ток		10 мА
			коллектора I_{κ} =9.9 мА, I_{6} =100		
			мкА. Найти I_{3} :		
37	4	2	В транзисторе ток		0,99
	-		коллектора $I_{\rm K} = 9.9$ мА, $I_{\rm G} =$		
			100 мкА. Найти α:		
			100 MM 1. Hantn W.		
38	4	2	В транзисторе ток		99
	·	-	коллектора $I_{\rm K} = 9.9$ мА, $I_{\rm G} =$		
			100мкА. Найти β:		
			Toomari. Humin p.		
39	4	2	Как смещены <i>р-п</i> -переходы	эмиттерный переход в прямом	_
37		2	при работе транзистора в	направлении, коллекторный в	
			активном режиме:	прямом	
			активном режиме.	эмиттерный переход в прямом	+
				направлении, коллекторный в	
				обратном	
				1	
				эмиттерный переход в обратном направлении,	-
				коллекторный в обратном	
				эмиттерный переход в	-
				обратном направлении,	
40	A	2	TC	коллекторный в прямом	
40	4	2	Как смещены р-п-переходы	эмиттерный переход в	+
			при работе транзистора в	обратном направлении,	
			режиме отсечки:	коллекторный в обратном;	
				эмиттерный переход в прямом	-
				направлении, коллекторный в	
				обратном	
				эмиттерный переход в	-
				обратном направлении,	
				коллекторный в прямом	
				эмиттерный переход в прямом	-
				направлении, коллекторный в	
				прямом	
41	4	2	Как смещены <i>р-п</i> -переходы	эмиттерный переход в	-
1			при работе транзистора в	обратном направлении,	

			режиме насыщения:	коллекторный в обратном	
				эмиттерный переход в прямом	-
				направлении, коллекторный в	
				обратном	
				эмиттерный переход в	-
				обратном направлении,	
				коллекторный в прямом	
				эмиттерный переход в прямом	+
				направлении, коллекторный в	
				прямом	
42	4	2	Движение каких носителей	неосновных	-
			заряда определяет вид	основных	+
			входной ВАХ биполярного	электронов	-
			транзистора:	дырок	-
				электронов и дырок	-
43	4	2	Движение каких носителей	электронов	-
			заряда определяет вид	основных	-
			выходной ВАХ биполярного	неосновных	+
			транзистора:	дырок	-
				электронов и дырок	-
44	4	2	Биполярный транзистор –	ТОКОМ	+
			это прибор, управляемый:	напряжением	_
				электрически полем	_
				сопротивлением	-
				магнитным полем	_
45	4	2	Полевой транзистор – это	током	_
			прибор, управляемый:	напряжением	+
				электромагнитным полем	_
				сопротивлением	_
				магнитным полем	_
46	4	2	В какой из трех схем	с ОБ	_
.0	•	_	включения (ОБ, ОЭ, ОК)	c OK	+
			биполярный транзистор	c OЭ	<u> </u>
			обладает наибольшим	с ОЭ и ОК одинаково	
			коэффициентом усиления по	с ОЭ и ОБ одинаково	_
			току:	с оэ и ов одинаково	_
47	4	2	В какой из трех схем	c OK	_
		_	включения (ОБ, ОЭ, ОК)	сОЭ	_
			биполярный транзистор	сОБ	+
			обладает наибольшим	с ОЭ и ОК одинаково	
			коэффициентом усиления по	с ОЭ и ОБ одинаково	_
			напряжению:	об поводиниково	
48	4	2	В какой из трех схем	сОЭ	+
	-	_	включения (ОБ, ОЭ, ОК)	сОБ	_
			биполярный транзистор	c OK	_
			обладает наибольшим	с ОЭ и ОК одинаково	_
			коэффициентом усиления по	с ОЭ и ОБ одинаково	_
			мощности:	головодинаково	_
	4	2	Условное обозначение <i>n-p-n</i>		а
49	4				u
49	4	2	транзистора:		

Т	<u> </u>	T	I	
		a 6 e z 0		
50 4	4 2	Условное обозначение <i>p-n-p</i>		ð
		транзистора:		
		а б в г д		
51 4	4 2	Условное обозначение		г
		полевого транзистора с		
		управляющим <i>p-n</i> -переходом		
		и <i>п</i> -каналом:		
52	4 2	<i>a 6 8 8 0</i>		
52 2	4 2	Условное обозначение полевого транзистора с		в
		полевого транзистора с встроенным p -каналом:		
		а б в г д		
53	4 2	Что может усиливать	ток, напряжение, мощность	-
		биполярный транзистор с	напряжение, мощность	+
		нагрузкой в схеме с общей	напряжение, ток	-
		базой – ток, напряжение,	только ток	-
		мощность:	только напряжение	-
54 4	4 2	Условное обозначение		d
		полевого транзистора с		
		встроенным <i>п</i> -каналом:		
		а б в г д		
55	4 2	Что может усиливать	ток, напряжение, мощность	+
		биполярный транзистор с	только напряжение	-
		нагрузкой в схеме с общим	ток и мощность	-
		эмиттером – ток,	напряжение и мощность	-
		напряжение, мощность:	напряжение, ток	
56	4 2	Каким выражением определяется уравнение	$E + U_{\rm ch} + I_{\rm c} \cdot R_{\rm c} = 0;$	-
		нагрузочной линии для	$E + U_{\text{cM}} = I_{\text{c}} \cdot R_{\text{c}};$	-
		± •		
		схемы включения общий	$E + I_{\rm c} \cdot R_{\rm c} = U_{\rm cu};$	-
		схемы включения общий исток (ОИ) с нагрузочным		- +
		схемы включения общий	$E + I_{c} \cdot R_{c} = U_{cu};$ $E = U_{cu} + I_{c} \cdot R_{c}.$	+
		схемы включения общий исток (ОИ) с нагрузочным сопротивлением в цепи стока полевого транзистора R_c и		+
57	4 2	схемы включения общий исток (ОИ) с нагрузочным сопротивлением в цепи стока		- + 6
57 2	4 2	схемы включения общий исток (ОИ) с нагрузочным сопротивлением в цепи стока полевого транзистора R_c и напряжением питания E :		
57	4 2	схемы включения общий исток (ОИ) с нагрузочным сопротивлением в цепи стока полевого транзистора R_c и напряжением питания E : Укажите схему включения		
57 4	4 2	схемы включения общий исток (ОИ) с нагрузочным сопротивлением в цепи стока полевого транзистора R_c и напряжением питания E : Укажите схему включения транзистора с общим		

58	4	2	Укажите схему включения транзистора с общим коллектором:	8	
59	4	2	Укажите схему включения транзистора с общей базой:	a	!
60	4	2	На рисунке показана входная характеристика транзистора. Определить схему включения: $I_{6} $		3
61	4	2	Установите соответствие h - параметров транзистора их расчетным соотношениям: $ \begin{array}{c cccc} 1 & -h_{11} & a & -\Delta I_{\rm K} / \Delta I_6 \\ 2 & -h_{12} & 6 & -\Delta I_{\rm K} / \Delta U_{\rm K} \\ 3 & -h_{21} & B & -\Delta U_6 / \Delta I_6 \\ 4 & -h_{22} & \Gamma & -\Delta U_6 / \Delta U_{\rm K} \end{array} $	1-а, 2-б, 3-в, 4- г - 1-в, 2-г, 3-а, 4-б + 1-в, 2-б, 3-а, 4- г - 1-б, 2-а, 3-г, 4-в - 1-г, 2-в, 3-б, 4-а -	
62	4	2	Выберите схему включения по постоянному току биполярного <i>p-n-p-</i> транзистора по схеме включения с общим эмиттером и направления токов в данной схеме:	2	

			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
63	4	2	Установите соответствие значений h -параметров транзистора их	-
			обозначениям:	
			передачи тока	-
				-
			$\begin{bmatrix} 3 & - & \text{входное} \\ \text{сопротивление} \end{bmatrix}$ в $\begin{bmatrix} -h_{21} & 1\text{-}6, 2\text{-}a, 3\text{-}\Gamma, 4\text{-}B} \end{bmatrix}$	-
			$\begin{bmatrix} 4 & - & \text{выходная} & \Gamma & -h_{12} & 1\text{-B}, 2\text{-}\Gamma, 3\text{-a}, 4\text{-}б \end{bmatrix}$	+
64	4	2	Полевые транзисторы по низкое входное сопротивление	-
			сравнению с биполярными высокое входное сопротивление	+
			имеют: входную характеристику в виде зависимости входного тока от входного напряжения	-
			параметр, характеризующий усилительные свойства – коэффициент усиления тока	-
65	4	2	Определите выходные вольт-	г
			амперные характеристики	
			биполярного транзистора в	
			схеме с общим эмиттером:	
			\$\frac{\lambda}{U_{50}} \begin{picture}(U_{50} > 0) & \frac{\lambda}{\lambda} & \frac{\lambda}{\	
66	4	2	Показать на выходных ВАХ биполярного транзистора с нагрузочной линией рабочие Режим отсечки, В – режим насыщения, С – активный режим	-
			точки, соответствующие А, В – активный режим, С – режим отсечки	-
			отсечки и насыщения. А – активный режим, В и С – режим насыщения	-
			A – режим насыщения, B – активный режим, С – режим отсечки	+

			$I_{\rm K} = I_{\rm G3} = I_{\rm G2} = I_{\rm G1} = I_{\rm G1} = I_{\rm G2} = I_{\rm G2} = I_{\rm G2} = I_{\rm G3} = I_{\rm G1} = I_{\rm G1} = I_{\rm G2} = I_{\rm G2} = I_{\rm G2} = I_{\rm G3} = I_{\rm G1} = I_{\rm G1} = I_{\rm G1} = I_{\rm G2} = I_{\rm G2} = I_{\rm G2} = I_{\rm G3} = I_{\rm G1} = I_{\rm G1} = I_{\rm G2} =$		
67	4	2	Транзисторный ключ на МДП (МОП) транзисторе с	$U_{3H} > 0$	-
			индуцированным n -каналом.	$U_{3H} < 0$ $U_{3H} > U_0$	-
			Какое напряжение U_{34}	$U_{3H} < U_0$	+
			(затвор-исток) необходимо	$U_{3M} < U_0$	
			приложить, чтобы ключ был	Сзи < C0	
			открыт (U_0 — пороговое		
			напряжение)		
68	4	2	Выберите вольтамперные		г
			характеристики		
			(передаточную и выходные)		
			полевого транзистора с управляющим <i>p-n</i> -переходом		
			с р-каналом		
69	4	2	К основным преимуществам	a), б)	+
09	4	2	полевого транзистора можно	e), 6)	+
			отнести:	a), r)	_
			а) большое входное	r), e)	_
			сопротивление по	a), δ), r)	-
			постоянному току;	б), в), д)	-
			б) высокая		
			технологичность; в) низкая температурная		
			в) низкая температурная стабильность		
			характеристик;		
			г) коэффициент		
			усиления по постоянному		
			току стремится к нулю;		
			д) малое выходное		
			сопротивление; е) маленькое входное		
		<u> </u>	е) маленькое входное		

			COMPONING HO		
			сопротивление по постоянному току.		
70	4	2	На рисунке изображена	стабилитрона	_
70	'	2	структура	полевого транзистора	_
			p	тиристора	_
			3 4	импульсного диода	_
				биполярного транзистора	+
71	4	2	Buyonin ia vanarranii crincu	TOVO VOLHAVTONO OT HOUNGWANING	+
/1	4	2	Выходные характеристики биполярного транзистора для	тока коллектора от напряжения	+
			схемы включения с общим	на коллекторе тока базы от тока коллектора	
			эмиттером — это	-	-
			зависимости:	тока базы от напряжения на базе	-
			Submemble 111.		
				напряжения на коллекторе от тока базы	_
				тока эмиттера от тока базы	_
72	4	2	Поположиноя	тока базы от напряжения на	
12	4	2	Передаточная характеристика полевого	коллекторе	-
			транзистора — это	напряжения стока от	_
			зависимость:	напряжения затвора	
			502110111125 6121	тока стока от напряжения	+
				затвора	·
				тока коллектора от напряжения	_
				на коллекторе	
				тока стока от напряжения	-
				между стоком и истоком	
73	4	2	Пусть имеются одинаковые	$V_{ ext{BT}n ext{-}p ext{-}n}\!>V_{\Pi ext{T}n}\!>V_{\Pi ext{T}p}$	-
			по габаритам транзисторы:	$V_{ ext{BT}n ext{-}p ext{-}n} \!> V_{\Pi ext{T}n} \!< V_{\Pi ext{T}p}$	-
			биполярный п-р-п со	$V_{ ext{BT}n ext{-}p ext{-}n} < V_{ ext{IIT}n} < V_{ ext{IIT}p}$	+
			скоростью переключения	$V_{\mathrm{BT}n\text{-}p\text{-}n} < V_{\mathrm{\Pi T}n} > V_{\mathrm{\Pi T}p}$	-
			$V_{\text{БТn-p-n}}, полевой с n-каналом$	$V_{\mathrm{BT}n\text{-}p\text{-}n} < V_{\mathrm{\Pi T}n} = V_{\mathrm{\Pi T}p}$	-
			$-V_{\Pi T n}$, полевой с p -каналом — $V_{\Pi T p}$. Как соотносятся скорости их работы?		
74	4	2	Полевой транзистор с <i>n</i> -	дырки движутся в	-
			каналом работает быстрее,	полупроводнике быстрее	
			чем аналогичный транзистор	электронов	
			с р-каналом, потому что:	входное сопротивление	-
				транзистора с <i>p</i> -каналом	
				больше, чем у транзистора с <i>n</i> -	
				каналом	
				входная емкость транзистора с	-
				р-каналом больше, чем у	
				транзистора с <i>n</i> -каналом	
				входная емкость транзистора с	-
				р-каналом меньше, чем у	
				транзистора с <i>n</i> -каналом	
				электроны движутся в	+

				полупроводнике быстрее дырок	
				входное сопротивление	-
				транзистора с <i>p</i> -каналом	
				меньше, чем у транзистора с <i>n</i> -	
				каналом	
75	4	2	Биполярный транзистор	входное сопротивление	-
			работает быстрее	биполярного транзистора	
			аналогичных полевых	больше, чем у полевых	
			транзисторов, потому что:	транзисторов	
				входное сопротивление	-
				биполярного транзистора	
				меньше, чем у полевых	
				транзисторов	
				у биполярного транзистора	+
				отсутствует проходная емкость	
				входная емкость биполярного	_
				транзистора больше, чем	
				входная емкость аналогичных	
				полевых транзисторов входная емкость биполярного	_
				<u> </u>	
				транзистора меньше, чем	
				входная емкость аналогичных	
76	4	2	Поставить в соответствие,	полевых транзисторов 1-г, 2-а, 3-в, 4-б	
70	+	2	приведенным ниже	1-а, 2-г, 3-в, 4-б	-
			характеристикам,		+
			перечисленные типы	1-б, 2-в, 3-а, 4-г	-
			транзисторов:	1-а, 2-г, 3-б, 4-в	-
			1) передаточные	1-г, 2-а, 3-б, 4-в	-
			характеристики полевых		
			транзисторов;		
			2) выходные		
			характеристики полевых		
			транзисторов;		
			3) входные характеристики		
			биполярных транзисторов;		
			4) выходные		
			характеристики		
			биполярных транзисторов.		
			u U_1 u		
77	1	2	II and 52500000 == -		
77	4	2	Нормируемые параметры	входное сопротивление	-
			биполярных транзисторов:	коэффициент усиления	-
				напряжения	
				коэффициент усиления тока	+
				крутизна характеристики	
				коэффициент ослабления	-
				синфазного сигнала	

70	4		1 77	1.1	
78	4	2	Усилительные свойства	коэффициентом усиления	-
			биполярного транзистора	напряжения	
			характеризуются:	коэффициентом усиления тока	+
				крутизной входной	-
				характеристики	
				крутизной выходной	-
				характеристики	
				коэффициентом обратной связи	-
79	4	2	Назначение биполярных	усиление электрических	+
			транзисторов:	сигналов	
				стабилизация напряжения	-
				использование в качестве	+
				электронных ключей	
				стабилизация тока	-
				выпрямление переменного тока	-
80	4	2	Параметр h_{21} биполярного	коэффициент усиления	-
			транзистора – это:	напряжения	
				коэффициент обратной связи	-
				входное сопротивление	-
				выходное сопротивление	-
				коэффициент усиления тока	+
81	4	2	Выходные характеристики	тока коллектора от напряжения	+
			транзистора для схемы	на коллекторе	
			включения с общим	тока базы от тока коллектора	-
			эмиттером – это	тока базы от напряжения на	-
			зависимость:	базе	
				напряжения на коллекторе от	-
				тока базы	
				тока эмиттера от тока базы	-
				тока эмиттера от напряжения на	-
				коллекторе	
82	4	2	Полевые транзисторы по	высокое входное сопротивление	+
			сравнению с биполярными	низкое входное сопротивление	-
			имеют:	стокозатворную характеристику	+
				в виде зависимости выходного	
				тока от входного напряжения	
				входную характеристику в виде	-
				зависимости входного тока от	
				входного напряжения	
				параметр, характеризующий	-
				усилительные свойства –	
				коэффициент усиления тока	
				параметр, характеризующий	+
				усилительные свойства –	
02	4		П	крутизна характеристики	
83	4	2	Передаточная	тока стока от напряжения стока	-
			характеристика полевого	тока стока от напряжения	+
			транзистора – это	затвора	
			зависимость:	тока стока от тока истока	-

				затвора	
				напряжения стока от	_
				напряжения затвора	
84	4	2	Входные характеристики	тока коллектора от напряжения	_
			транзистора для схемы	на коллекторе	
			включения с общим	тока базы от тока коллектора	-
			эмиттером – это	тока базы от напряжения на	+
			зависимость:	базе	
				напряжения на коллекторе от	-
				тока базы	
				тока эмиттера от тока базы	-
				тока эмиттера от напряжения на	-
				коллекторе	
85	5	3			-
					+
					-
					-
					_
86	5	3			_
					+
					_
					_
07	_	2			-
87	5	3			-
					+
					-
					+
					-
					-
88	5	3			+
					-
					-
					+
					_
					_
89	5	3			
0)	5	,			+
					-
					-
					-
					+
90	5	3			+
					+
					-
					-
					-
		<u> </u>	1	<u> </u>	

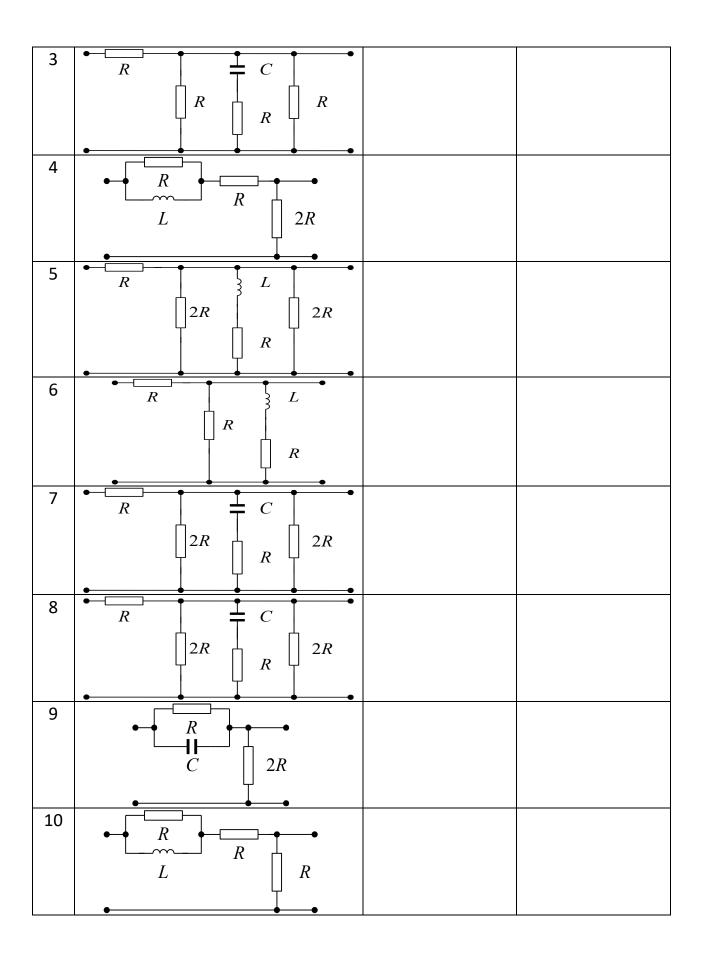
0.1	_	2		-
91	5	3		+
				-
				-
				-
				-
				+
92	5	3		-
				-
				-
				+
				+
				-
93	5	3		_
				_
				+
				_
				_
				_
94	5	3		_
74	3	3		+
				_
				_
				-
0.5	_	2		-
95	5	3		-
				-
				+
				-
				-
				-
96	5	3		-
				-
				-
				-
				-
				+
97	5	3		-
				-
				+
				-
				-
				_
98	5	3		_
	-	_		+
				'

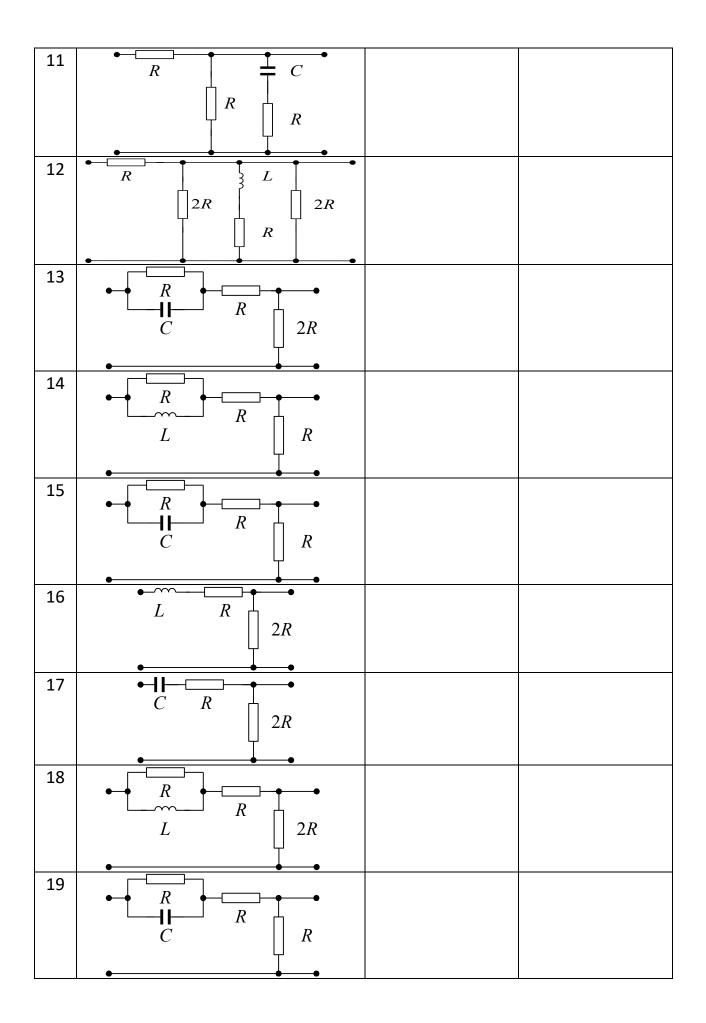
				-
				-
				-
				+
99	5	3		+
				-
				-
				-
				+
				-
100	5	3		-
				-
				+
				+
				-
				-

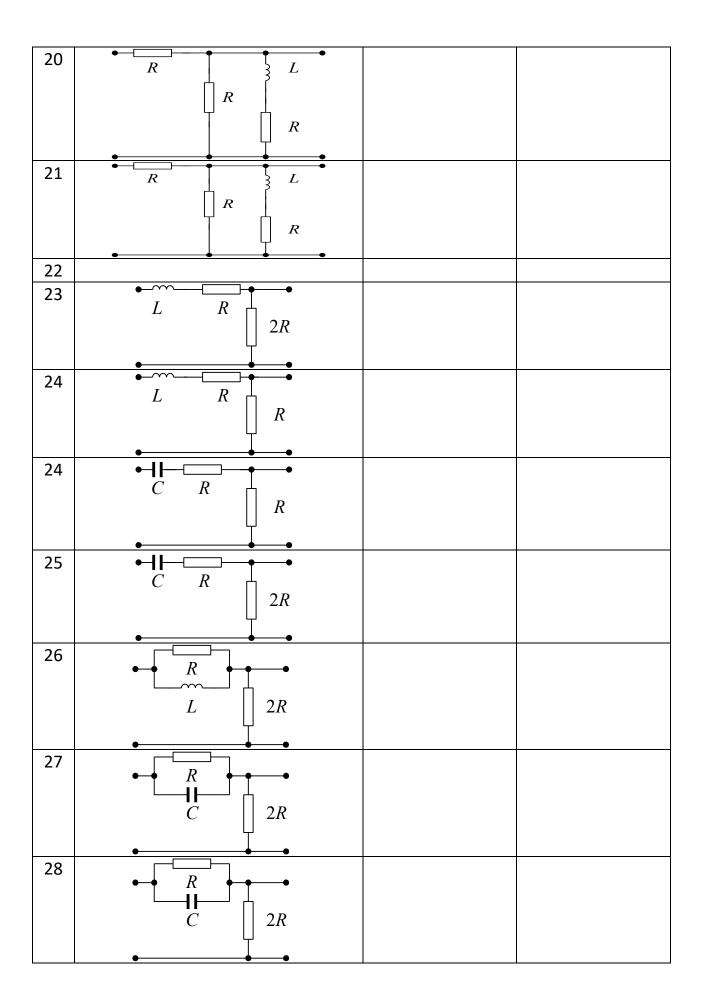
2.2 Задачи (расчетные задачи)

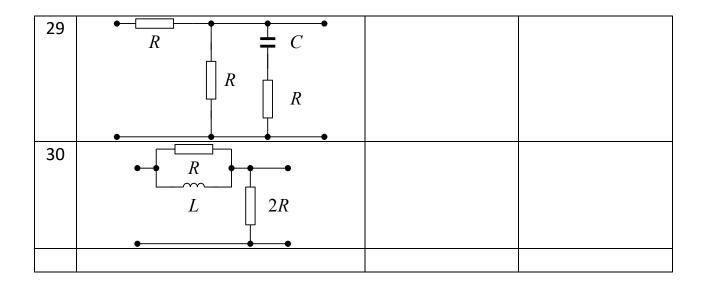
Решение типовых задач по вариантам.

Контрольная работа №1


Рассчитать и построить амплитудно-частотную и фазо-частотную характеристики следующих пассивных цепей:


N.C.	C 1	D	C
№	Схема 1	R	C
1.	$\begin{array}{c c} R \\ \hline & C \\ \hline & R \end{array}$	R = 91 кОм	$L=50$ м Γ н
2.	R R R R R	R = 120	$L=0,\!03$ м Γ н
3.	$\begin{bmatrix} R & & & \\ $	R = 620	L = 0,5 м Γ н


4.		R = 10 кОм	C = 0,1 мкФ
	$R \qquad \stackrel{\leftarrow}{=} C$		
	\bigcap R		
5.	R	R = 220	$C = 220 \text{ m}\Phi$
	$C \qquad \qquad R \qquad \qquad \square$		
6.		<i>R</i> = 2,2 кОм	<i>C</i> = 0,1 мкФ
	$R \qquad \downarrow \qquad C$	7,2 KOM	0,1 MK 1
	\downarrow \uparrow \downarrow R		
7.	R L	R = 10 кОм	$L=0,1$ м Γ н
	$\bigcap R$		
	R		
8.	R	R = 910	$L = 80 \text{ м}\Gamma\text{H}$
	L R R		
9.	$R \longrightarrow L$	$R = 47 \mathrm{кОм}$	$L = 7$ м Γ н
	$\bigcup R$		
	R		
10.	$R \longrightarrow C$	<i>R</i> = 1 кОм	$C = 0.2 \text{ мк}\Phi$
	\bigcap_{R}		
	\bigvee \bigvee R		
11.		R = 120	$L = 0,3$ м Γ н
	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
	<u> </u>		
12.	R	<i>R</i> = 9,1 кОм	$C = 0.15 \text{ мк}\Phi$
	└─┩┠──┘┌┐		
	$C \qquad \qquad \bigcup_{\Gamma} R$		
13.		R = 470	$L = 30 \text{ м}\Gamma\text{H}$
	$R \longrightarrow R$		
	L R		
	Ţ		


14.	• • •	R = 8,2 кОм	$C = 330 \; п\Phi$
14.	$R \mid$	N = 0,2 ROM	C - 330 HP
	R + C		
	Y 1		
15.	• • •	<i>R</i> = 51 кОм	$L = 5 \text{ M}\Gamma\text{H}$
13.	$R \stackrel{\perp}{\vdash} \ \ \left[\right]$	N = 31 ROW	L 3 WII II
	R		
	Y		
16.		<i>R</i> = 1 кОм	$C = 6800 \; \Pi\Phi$
10.	ightharpoonup R	K – I KOM	C 0000 H +
	$R \downarrow R$		
	C R		
	<u> </u>		
17.		<i>R</i> = 3,3 кОм	$L=0,1$ м Γ н
	$R \longrightarrow R$		
	L R R		
18.	R	R = 3,3 кОм	$C = 680 \pi\Phi$
	T K		
	$C \cap R$		
	$\stackrel{=}{=} C \qquad $		
19.	R	<i>R</i> = 68 кОм	$L = 3 \text{ M}\Gamma\text{H}$
	R		
	$\begin{cases} L & $		
	<u> </u>		
20.		R = 1,8 кОм	$C = 130 \pi\Phi$
	$R \qquad \downarrow \qquad \qquad \downarrow \qquad C$		
	ŲΛ T Č		
21.		R=27	$C=1$ мк Φ
	C R R		
	Ų ∧		
	<u> </u>		
22.	$R \longrightarrow L$	R = 56 кОм	$L=3$ м Γ н
	$\bigcup_{\perp} R$		
	•		

23.	C	R = 4,7 кОм	$C = 2700 \text{ m}\Phi$
	$igcup_{\Gamma} R$		
24.	R	R = 7,5 кОм	$L=1 \text{ M}\Gamma\text{H}$
	L R		
25.		R = 24 кОм	$L = 7 \text{ м}\Gamma\text{H}$
	L R R		
26.	$R \rightarrow L$	R = 100	$L = 80$ м Γ н
	3		
	$igcup_{\perp} R$		
27.	R	R = 18 кОм	$C = 620 \pi\Phi$
	\downarrow		
28.			
20.	R C R		
29.	R	R = 820	$C = 910 \text{ m}\Phi$
	$\bigcap_{\Gamma} R$		
	$C \cap R$		
30.			_
Nº	Схема 2	R	С
1	R		
	\bigcap R		
	$\stackrel{\perp}{=} C \qquad \qquad \mid \qquad R \qquad \mid$		
2	R L		
	\bigcap_{R} \bigcap_{R} \bigcap_{R}		

Контрольная работа №2

По числовым данным, приведенным в таблице, рассчитать статический режим работы транзистора КТ-312Б, характеристики которого даны на рис. $5 \div 8$. Схема усилительного каскада приведена на рис. 4. В таблице даны: положение рабочей точки ($U_{\text{кэA}}$, $I_{\text{кэA}}$), напряжение питания каскада ($E_{\text{к}}$), номинальное значение температуры окружающей среды (T), интервал изменения температуры (ΔT), интервал разброса параметров резисторов (δ).

Определить номинальные значения резисторов R_1 , R_2 , R_{κ} , R_3 , коэффициент температурной нестабильности S, приращение коллекторного тока ΔI_{κ} в заданных интервалах температуры и разброса параметров.

Номер	$U_{ ext{ iny K}},$	$I_{ ext{k} ext{A}}$,	$E_{\scriptscriptstyle \mathrm{K}},$	Т,	ΔT ,	δ,
варианта	В	мА	В	°C	°C	%
1.	12,5	10	25	25	-35	±20
2.	10	23	25	25	+40	±20
3.	8	15	16	25	+35	±20
4.	12,5	15	20	25	+40	±20
5.	5	20	10	25	+45	±20
6.	10	25	25	20	-50	±10
7.	20	8	25	20	+50	±10
8.	9	13	18	20	+40	±30
9.	12,5	20	25	25	-40	±20
10.	7	25	18	20	+50	±10
11.	7,5	20	20	20	+35	±25
12.	15	15	25	20	-35	±20
13.	10	10	20	20	-50	±10
14.	5	25	20	20	-50	±20
15.	9	15	22	20	+50	±10

16.	10	20	25	25	+30	±20
17.	7,5	20	20	20	+30	±30
18.	12,5	6	20	25	-30	±20
19.	5	22	15	20	-20	±20
20.	8	10	10	20	-50	±15
21.	8	6	15	20	-35	±20
22.	10	18	25	20	+20	±25
23.	8	15	25	25	+45	±30
24.	12	7	20	20	+40	±20
25.	5	20	25	20	+35	±10
26.	5	16	16	25	+25	±20

Контрольная работа №3

По заданной в таблице схеме рассчитать следующие основные параметры усилителя: коэффициент усиления по напряжению K_U , коэффициент усиления по току K_I , входное сопротивление $R_{\rm BX}$, выходное сопротивление усилителя $R_{\rm BMX}$.

No	Схема	h_{2131}	h_{2132}	h_{2133}	h_{1131} ,	h_{1132} ,	h_{1133} ,	h_{22} ,
п/п					кОм	кОм	кОм	Om ⁻¹
1.	39K 6,8K 7 4 4 4 4 4 7 4 7 7 8 8 1 30K 82 2,2K 7 8 8 1 8 2 2,2K 7 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	50	30	20	2	2	1	10-4
2.	24K 56K 1,8K 4,3K	80	40	30	2	1	1	10-4

No	Схема	h_{2131}	h_{2132}	h_{2193}	h_{1131} ,	h_{1132} ,	h_{1133} ,	h_{22} ,
п/п					кОм	кОм	кОм	Ом-1
3.	1 С _р 2 С _р С _р 3 VT3 С _р 4 180к 1,6к 130 100	60	20	30	2	1	1	10-4
4.	51к 75к VT2 VT2 VT2 VT2 VT2 VT3	70	50	30	2	1	2	10-4
5.	130K 82K 15 B 15 B 15 B 15 B 15 B 15 B 16 B 16 B	20	40	60	2	1	2	10-4
6.	47к 36к 2,7к 1 1	50	10	30	2	1	1	10-4

№	Схема	h_{2131}	h_{2132}	h_{2193}	h_{1131} ,	h_{1132} ,	h_{1193} ,	h_{22} ,
п/п					кОм	кОм	кОм	Ом-1
7.	1 С _р С _р VT2 100к 82к 0,51к 100	40	20	60	1	2	2	10-4
8.	43K 47K 4,3K 11K VT3 4 C _p VT2 H VT3 C _p C _p 62K 33K 0,91K 18K 220 91	60	25	50	3	1	2	10-4
9.	11K 110K 160K 7,5K 7,5K VT1 VT2 3 VT3 2,7K 18K 82K 110K 150 3,3K	40	80	20	1	2	2	10-4
10.	47K 62K 5,1K 5,1K VT3 C _p 4 VT2 II VT3 C _p 4 110K 82K 3K 7,5K 430 150	70	30	40	2	1	2	10-4

№	Схема	h_{2131}	h_{2132}	$h_{21:33}$	h_{1131} ,	h_{1132} ,	h_{1133} ,	h_{22} ,
п/п					кОм	кОм	кОм	Ом-1
11.	130K 82K 15 B 15 B 15 B 15 B 16 B 16 B 16 B 16 B	80	50	30	2	1	2	10-4
12.	1 100K 10K 3 1 VT1 VT3 3 1K 18K 3K	30	40	50	2	1	3	10-5
13.	39K 240K 5,6K VT1 VT2 3 VT3 1,8K 62K 130K 82 2,7K	30	50	20	1	3	1	10-4
14.	27K 7,5K 56K VT2 3 VT3 4 36K 160 68K 27K 0,62K 470	60	50	40	1	2	3	10-4

№	Схема	h_{2131}	h_{2132}	$h_{21:33}$	h_{1131} ,	h_{1132} ,	h_{1133} ,	h_{22} ,
п/п					кОм	кОм	кОм	Ом-1
15.	43K 56K 18K 4,3K C _p 4 C _p C _p 3 VT2 11 4,7K VT3 62K 75K 2K 27K 3,6K 5,6K	80	25	30	2	2	1	10-4
16.	51K 200K 5K 30K 20 B 20 B 1 20 K 20	20	30	40	2	1	1	10-4
17.	11к 91к 110к 3,6к 1 VT1 2 VT2 3 VT3 6,8к 130к 82к 110 1,8к	60	70	40	1	3	1	10-4
18.	100K 15 B 100K 15 B 100K 1K 100K	30	50	20	2	1	1	10-4
19.	9,1к 7,5к 33 15B 15B 1 1	20	40	40	1	1	2	10-4

№	Схема	h_{2131}	h_{2132}	h_{2133}	h_{1131} ,	h_{1132} ,	h_{1133} ,	h_{22} ,
п/п					кОм	кОм	кОм	Ом-1
20.	39K 68K 22K 7,5K 1 C _p C _p 3 VT3 VT3 VT3 1,8K	50	30	50	3	1	2	10-4
21.	220K 68K 82K VT2 11K VT1 2 3 C _p 4 VT3 11 VT3 11 47K 0,75K 680	60	50	40	3	1	2	10-4
22.	12K 5,1K 68K 1K 10B 10B 3,3K 0,5K 24K 270K 2,7K 1K 10B	40	60	50	1	2	1	10-4
23.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	50	40	1	2	1	10-4
24.	16к 3к 15В 15В 15В 1 1 1 1	60	20	40	2	1	1	10-4

No	Схема	h_{2131}	h_{2132}	h_{2133}	h_{1131} ,	h_{1132} ,	$h_{11\ni 3}$,	h_{22} ,
п/п					кОм	кОм	кОм	Ом-1
25.	27к 6,8к 12к 3к 3 15В	30	40	50	1	1	2	10-4
26.	24k 56k 1,8k 4,3k C _p 4 C _p 2 C _p C _p 3 VT3 3,9k VT1 1 VT1 2 VT2 1 VT3 82k 75k 2k 2,7k 3,6k C _s 1k	60	20	30	2	1	1	10-4
27.	1,2K 15K 180K 100 1K 10B	20	30	60	1	2	2	10-4
28.	та т	60	20	50	1	2	1	10-4
29.	1 C _p 2 1 VT2 C _p C _p VT2 C _p 1 VT3 1 SK 91K 6,2K	30	60	20	1	1	2	10-4

No	Схема	h_{2131}	h_{2132}	h_{2133}	h_{1131} ,	h_{1132} ,	h_{1133} ,	h_{22} ,
п/п					кОм	кОм	кОм	Ом-1
30.	10K 150K 220K 8,2K 4 VT3 1,5K 180K 160K 270 1,3K	70	20	50	1	2	1	10-4
31.	1 6,2K 2 1,2K 2,2K 180 2,4K 75K 1,3K	30	20	30	1	2	2	10-4
32.	22K 3K 2 VT2 VT3 4 3 9,1K 100 1	20	30	50	1	2	2	10-4
33.	33K 6,8K 4,3K 4,7K 4,7K 7 3 4 Cp 7 3 1 4 Cp 7 3 3 3 3 3 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0	60	50	40	2	1	1	10-4
34.	9,1к 7,5к 15B 1 2 3 VT3 4 1,2к 0,68к 100 100	20	50	40	1	2	1	10-4

№	Схема	h_{2131}	h_{2132}	h_{2133}	h_{1131} ,	h_{1132} ,	h_{1133} ,	h_{22} ,
п/п					кОм	кОм	кОм	Ом-1
35.	1 С _р 2 С _р VT2 100к 0,51к 100	60	40	30	2	1	1	10-5
36.	10K 5,1K 3K 15B 1 10K 15B	50	20	30	2	1	1	10-4
37.	33K 47K 11K 8,2K C _p 4 1 C _p 2 C _p C _p 3 5,1K VT1 75K 56K 1K 16K 1,6K C ₃ 1,8K	20	40	20	1	1	2	10-4
38.	27K 10K 10K 8,2K 10B	35	25	25	1	1	1	10-5
39.	22K	20	30	40	1	2	1	10-4

№	Схема	h_{2131}	h_{2132}	h_{2133}	h_{1131} ,	h_{1132} ,	h_{1133} ,	h_{22} ,
п/п					кОм	кОм	кОм	Ом-1
40.	16к 13к 9,1к 4 2 3 4 VT2 VT3	30	20	40	2	2	1	10-4
41.	9,1 K 3,3 K 5,1 K 20B 1	20	60	40	1	2	1	10-4
42.	10B 47K 3K 10B 47K VT1 VT2 4 VT3 1,2K 15K 180K 100 1K 10B	20	30	60	1	2	2	10-4
43.	18K 5,6K 10K 0,51K 20B 2 Cp VT2 1 VT3 4 Cp 5,1K 3K C ₉ 3,3K 2,7K 0,33K 100	40	30	50	1	1	1	10-4
44.	27K 6,8K 12K 3K 3K VT2 VT3 4 15B VT2 VT3 4 15K 9,1K 0,51K 1 1 1 1 1 1 1 1 1	30	40	50	1	1	2	10-4

№	Схема	h_{2131}	h_{2132}	h_{2133}	h_{1131} ,	h_{1132} ,	$h_{11\ni 3}$,	h_{22} ,
п/п					кОм	кОм	кОм	Ом ⁻¹
45.	47K 36K 2,7K 2,7K VT2 II VT3 C _p 4 4,3K VT1 68K 3K 4,7K 430 160	50	10	30	2	1	1	10-4
46.	43K 47K 4,3K 11K VT2 11 VT3 4 Cp VT2 11 Cp 220 91	60	25	50	3	1	2	10-4
47.	11 K 110 K 160 K 7,5 K 4 VT1 1,8 K VT2 3 VT2 3 VT3 2,7 K 150 3,3 K	40	80	20	1	2	2	10-4
48.	47K 62K 5,1K 5,1K VT2 1H VT3 C _p 4 110K 82K 3K 7,5K 430 150	70	30	40	2	1	2	10-4

No॒	Схема	h_{2131}	h_{2132}	h_{2133}	h_{1131} ,	h_{1132} ,	h_{1133} ,	h_{22} ,
п/п					кОм	кОм	кОм	Ом-1
49.								
50.	13K 2 VT3 4 VT3 4 VT1 360 24K 1,2K 470	40	30	50	1	2	2	10-4
51.	39K 240K 5,6K 5,6K VT1 VT2 3 VT3 2 2,7K	30	50	20	1	3	1	10-4
52.	27K 7,5K 56K 15B 1	60	50	40	1	2	3	10-4
53.	43K 56K 18K 4,3K C _p 4 C _p C _p C _p 3 VT2 II VT3 62K 75K 2K 27K 3,6K 5,6K	80	25	30	2	2	1	10-4

Контрольная работа №4

По заданным в таблице данным рассчитать по коэффициентам Берга 5 гармоник выходного тока после нелинейного элемента, а после прохождения сигнала через резонансный колебательный контур, который настроен на частоту одной из гармоник, определить величину напряжений данных гармоник и построить суммарную огибающую спектра данных гармоник.

No॒	U_0 ,	U_1 ,	U_m ,	ω_0 ,	S, (A/B)	R,	Q	k
	(B)	(B)	(B)	(рад/с)		(O_M)		
1.	-10	-2	10	$2\pi \cdot 5 \cdot 10^4$	0,04	2.10^{3}	20	4
2.	-11	7	20	$2\pi \cdot 10^5$	0,03	10^{4}	45	5
3.	1	1,5	2	$2\pi \cdot 3 \cdot 10^5$	0,04	3·10 ⁴	25	5
4.	-0,5	1	2	$2\pi \cdot 5 \cdot 10^5$	0,05	5·10 ⁴	15	2
5.	0	4	7	$2\pi \cdot 10^5$	0,01	5·10 ⁴	20	3
6.	-0,5	2	3	$2\pi \cdot 10^{6}$	0,07	2.10^{3}	35	4
7.	-1	0	12	$2\pi \cdot 7 \cdot 10^4$	0,005	10^{5}	35	3
8.	-0,5	3	4	$2\pi \cdot 3 \cdot 10^6$	0,09	5·10 ²	55	3
9.	- 2	1	4,5	$2\pi \cdot 10^5$	0,01	10^{4}	20	4
10.	-1	2	3,5	$2\pi \cdot 10^6$	0,02	5·10 ³	15	3
11.	-1	2	4	$2\pi \cdot 10^5$	0,01	5·10 ³	10	2
12.	-1,5	1,5	4	$2\pi \cdot 10^6$	0,05	10^{4}	20	5
13.	-3	0	3,5	$2\pi \cdot 10^6$	0,01	2.104	35	2
14.	-1	0	3,3	$2\pi \cdot 10^5$	0,01	2.105	50	2
15.	0	6	6,4	$2\pi \cdot 5 \cdot 10^5$	0,02	2.10^{5}	30	5
16.	0	1,3	6,3	$2\pi \cdot 10^6$	0,01	10^{5}	100	3
17.	-1	-1	1	$2\pi \cdot 10^6$	0,2	10^{2}	10	4
18.	0	-0,3	1,5	$2\pi \cdot 5 \cdot 10^5$	0,05	10^{3}	25	2
19.	1	12	14	$2\pi \cdot 10^4$	0,1	10^{2}	10	5
20.	0	-4	5	$2\pi \cdot 3 \cdot 10^4$	0,03	2.104	30	2
21.	0	4	4,3	$2\pi \cdot 10^5$	0,02	10^{4}	10	4
22.	0	4	8	$2\pi \cdot 10^{5}$	0,01	2.10^4	15	3
23.	0	4	6	$2\pi \cdot 10^5$	0,01	8.104	25	4
24.	-0,5	1,5	2,5	$2\pi \cdot 7 \cdot 10^5$	0,06	3.10^{3}	10	3
25.	-0,5	2,5	3,5	$2\pi \cdot 2 \cdot 10^6$	0,08	10^{3}	45	5
26.	1	0,5	2	$2\pi \cdot 2 \cdot 10^5$	0,03	2.104	30	4
27.	0	-0,5	2,5	$2\pi \cdot 10^{5}$	0,03	10^{3}	50	2
28.						-		
29.								
30.								

Критерии оценивания:

Критерии оценивания	Кол-во
	баллов
При решении задачи обучающийся выделяет данные в условии величины,	8-10
переводит в систему СИ внесистемные единицы, умеет рационально делать	
числовые расчеты по формулам, в частности с учетом приближенных	
вычислений, выделяет в системе исходных уравнений неизвестные величины	
и выражает их через данные в условии задачи. Умеет выбрать масштаб для	
построения векторных диаграмм. Векторные диаграммы строит строго с	
учетом выбранного масштаба.	
при решении обучающийся выделяет данные в условии величины, переводит в	5-7
систему СИ внесистемные единицы, умеет делать числовые расчеты по	
формулам, выделяет в системе исходных уравнений неизвестные величины и	
выражает их через данные в условии задачи с помощью преподавателя. Умеет	
выбрать масштаб для построения векторных диаграмм. Векторные диаграммы	
строит с учетом выбранного масштаба и допускает неточности.	
при решении обучающийся выделяет данные в условии величины, переводит в	3-4
систему СИ внесистемные единицы, делает числовые расчеты по формулам с	
помощью преподавателя. Векторные диаграммы строит без учета выбранного	
масштаба и допускает неточности.	
при решении обучающийся выделяет только данные в условии величины без	1-2
перевода в систему СИ внесистемных единиц, расчеты отсутствуют.	
Векторные диаграммы отсутствуют.	

2.3 Реферат (Эссе, доклад)

Учебным планом не предусмотрены.

2.4 Выполнение лабораторных работ

Учебным планом не предусмотрены.

3. Оценочные средства для проведения промежуточного контроля (промежуточной аттестации)

Семестр	Вид промежуточной аттестации	Вид контрольного мероприятия	Балльные оценки
4	Зачет	Тестовые задания Вопросы на зачете	0-20 0-30

3.1. Тестовые задания

Тестовые задания промежуточной аттестации представляют собой совокупность тестовых вопросов текущего контроля.

3.2 Комплексное задание (экзаменационный билет)

Билеты для зачета равноценны по трудности, одинаковы по структуре, параллельны по расположению заданий. В билете два вопроса.

3.2.1 Вопросы на зачете/экзамене (экзаменационные вопросы)

No	Тип вопроса	Вопрос
п/п		
1	Теоретический	Электрические свойства металлов, диэлектриков и
		полупроводников. Полупроводниковые материалы
2		Механизм собственной проводимости в чистых
		полупроводниках
3		Механизм донорной проводимости в полупроводниках
4		Механизм акцепторной проводимости в полупроводниках
5		Зонная теория полупроводников
6		Идеальный <i>p-n</i> -переход, его вольтамперная характеристика
7		Классификация диодов, эквивалентная электрическая схема
		диода (р-п-перехода)
8		Зависимость параметров диода от частоты входного сигнала и
		температуры
9		Импульсные диоды
10		Классификация транзисторов
11		Принцип работы транзистора (на примере включения с общей
		базой)
12		Входные и выходные вольтамперные характеристики
		транзистора с общей базой
13		Входные и выходные вольтамперные характеристики
		транзистора с общим эмиттером
14		Эквивалентная электрическая схема транзистора с общей базой
15		Эквивалентная электрическая схема транзистора с общим
		эмиттером

16		Эквивалентная электрическая схема транзистора с общим эмиттером в h -параметрах, транзистор как линейный четырехполюсник
17		Зависимость параметров транзистора от частоты входного
10		сигнала и температуры
18		Сравнение параметров схем включения транзистора с общей базой и общим эмиттером
19		Полевой транзистор с управляющим р-п-переходом: структура,
		выходные и стокозатворная характеристики
20		Полевой транзистор с встроенным каналом: структура,
		выходные и стокозатворная характеристики
21		Полевой транзистор с индуцированным каналом: структура,
		выходные и стокозатворная характеристики
22		Эквивалентная электрическая схема полевого транзистора с
		общим истоком
23		Динистр
24		Тринистр
25		Классификация интегральных микросхем
26		Основные технологические процессы, применяемые в
		производстве ИС (сущность процессов и назначение)
27		Пассивные элементы в интегральных микросхемах
28		Биполярные транзисторы в интегральных микросхемах
29		Полевые транзисторы в интегральных микросхемах
30		Диоды в интегральных микросхемах
31		Способы изоляции в интегральных микросхемах
32		Преимущества интегральных микросхем перед схемами на дискретных элементах
33	Теоретико-	Выпрямительные диоды. Однополупериодный выпрямитель
	практический	
34	1	Стабилитрон (опорный диод). Параметрический стабилизатор
		напряжения
35		Схемы включения транзистора (примеры схем включения,
		коэффициенты усиления по току и напряжению в каждой
		схеме)
36		Способы задания рабочей точки
37		Термостабилизация рабочей точки транзистора по
		постоянному току с помощью ООС по напряжению
38		Термостабилизация рабочей точки транзистора по
		постоянному току с помощью ООС по току

Критерии оценивания

Суммарно оцениваются ответы на вопросы. Ответы должны быть развернутыми, полными. Каждый правильный ответ на вопрос оценивается до 15 баллов в зависимости от полноты ответа.

Оценивается полнота раскрытия материала; логичность изложения материала; умение иллюстрировать конкретными примерами; знание формул, терминологии, обозначений; использование профессиональной

терминологии; демонстрация усвоенного ранее материала; самостоятельность в изложении материала.

Пример балльной системы оценивания:

Критерии оценивания	Количество баллов
– полно раскрыто содержание материала;	
– материал изложен грамотно, в определенной логической	
последовательности;	
 продемонстрировано системное и глубокое знание материала; 	
точно используется терминология;показано умение иллюстрировать теоретические положения	
конкретными примерами, применять их в новой ситуации;	
 продемонстрировано усвоение ранее изученных сопутствующих 	10-15
вопросов;	
– ответ дан самостоятельно, без наводящих вопросов;	
– продемонстрирована способность творчески применять знание теории	
к решению профессиональных задач; допущены одна-две неточности	
при освещении второстепенных вопросов, которые исправляются по	
замечанию;	
– вопросы излагаются систематизировано и последовательно;	
– продемонстрировано умение анализировать материал, однако не все	
выводы носят аргументированный и доказательный характер;	
– продемонстрировано усвоение основной литературы;– ответ удовлетворяет в основном требованию на максимальную оценку,	
но при этом имеет один из недостатков: в изложении допущены	
небольшие пробелы, не исказившие содержание ответа; допущены один-	7-9
два недочета	
при освещении основного содержания ответа, исправленные по	
замечанию преподавателя;	
– допущены ошибка или более двух недочетов при освещении	
второстепенных вопросов, которые легко исправляются по замечанию	
преподавателя;	
– неполно или непоследовательно раскрыто содержание материала, но	
показано общее понимание вопроса и продемонстрированы умения,	
достаточные для дальнейшего усвоения материала;	
 усвоены основные категории по рассматриваемому и дополнительным вопросам; 	
 имелись затруднения или допущены ошибки в определении понятий, 	4-6
использовании терминологии, исправленные после нескольких	. 0
наводящих ответов;	
– неполное знание теоретического материала, обучающийся не может	
применить теорию в новой ситуации;	
 продемонстрировано усвоение основной литературы; 	
– не раскрыто основное содержание учебного материала либо отказ от	
ответа;	
– обнаружено незнание или непонимание большей или наиболее важной	1.2
части учебного материала;	1-3
– допущены ошибки в определении понятий, при использовании	
терминологии, некоторые не исправлены после нескольких наводящих вопросов.	
builbucop.	

-ответ не получен.	0
J	

Пример балльной системы оценивания вопросов:

Задание		Количе
	Критерии оценивания	ство
		баллов
Теоретический	 полно раскрыто содержание материала; 	0-15
вопрос	- материал изложен грамотно, в определенной логической	
	последовательности;	
	– продемонстрировано системное и глубокое знание материала;	
	точно используется терминология;	
	- показано умение иллюстрировать теоретические положения	
	конкретными примерами, применять их в новой ситуации;	
	- продемонстрировано усвоение ранее изученных сопутствующих	
	вопросов;	
	– допущены одна-две неточности при освещении второстепенных	
	вопросов, которые исправляются по замечанию;	
Теоретико-	– ответ дан самостоятельно, без наводящих вопросов;	0-15
практический	– продемонстрирована способность творчески применять знание	
вопрос	теории к решению профессиональных задач;	
	- все выводы носят аргументированный и доказательный характер	